Unconstrained steps of myosin VI appear longest among known molecular motors.

نویسندگان

  • M Yusuf Ali
  • Kazuaki Homma
  • Atsuko Hikikoshi Iwane
  • Kengo Adachi
  • Hiroyasu Itoh
  • Kazuhiko Kinosita
  • Toshio Yanagida
  • Mitsuo Ikebe
چکیده

Myosin VI is a two-headed molecular motor that moves along an actin filament in the direction opposite to most other myosins. Previously, a single myosin VI molecule has been shown to proceed with steps that are large compared to its neck size: either it walks by somehow extending its neck or one head slides along actin for a long distance before the other head lands. To inquire into these and other possible mechanism of motility, we suspended an actin filament between two plastic beads, and let a single myosin VI molecule carrying a bead duplex move along the actin. This configuration, unlike previous studies, allows unconstrained rotation of myosin VI around the right-handed double helix of actin. Myosin VI moved almost straight or as a right-handed spiral with a pitch of several micrometers, indicating that the molecule walks with strides slightly longer than the actin helical repeat of 36 nm. The large steps without much rotation suggest kinesin-type walking with extended and flexible necks, but how to move forward with flexible necks, even under a backward load, is not clear. As an answer, we propose that a conformational change in the lifted head would facilitate landing on a forward, rather than backward, site. This mechanism may underlie stepping of all two-headed molecular motors including kinesin and myosin V.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myosin Va and myosin VI coordinate their steps while engaged in an in vitro tug of war during cargo transport.

Myosin Va (myoV) and myosin VI (myoVI) are processive molecular motors that transport cargo in opposite directions on actin tracks. Because these motors may bind to the same cargo in vivo, we developed an in vitro "tug of war" to characterize the stepping dynamics of single quantum-dot-labeled myoV and myoVI motors linked to a common cargo. MyoV dominates its myoVI partner 79% of the time. Rega...

متن کامل

Myosin lever arm directs collective motion on cellular actin network.

The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poor...

متن کامل

Load-dependent ADP binding to myosins V and VI: implications for subunit coordination and function.

Dimeric myosins V and VI travel long distances in opposite directions along actin filaments in cells, taking multiple steps in a "hand-over-hand" fashion. The catalytic cycles of both myosins are limited by ADP dissociation, which is considered a key step in the walking mechanism of these motors. Here, we demonstrate that external loads applied to individual actomyosin V or VI bonds asymmetrica...

متن کامل

Model for processive movement of myosin V and myosin VI

Myosin V and myosin VI are two classes of two-headed molecular motors of the myosin superfamily that move processively along helical actin filaments in opposite directions. Here we present a hand-over-hand model for their processive movements. In the model, the moving direction of a dimeric molecular motor is automatically determined by the relative orientation between its two heads at free sta...

متن کامل

Localization of unconventional myosins V and VI in neuronal growth cones.

Class V and VI myosins, two of the six known classes of actin-based motor genes expressed in vertebrate brain (Class I, II, V, VI, IX, and XV), have been suggested to be organelle motors. In this report, the neuronal expression and subcellular localization of chicken brain myosin V and myosin VI is examined. Both myosins are expressed in brain during embryogenesis. In cultured dorsal root gangl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 86 6  شماره 

صفحات  -

تاریخ انتشار 2004